Multi-billion-dollar benefits identified by improving Wellington and New Zealand’s infrastructure resilience to earthquake damage — *Reaching Resilience Faster by Working Together*

KELVIN BERRYMAN\(^1\), MICHELE DALY\(^1\), GARRY MCDONALD\(^2\), NICOLA SMITH\(^2\), CHARLOTTE BROWN\(^3\), ERICA SEVILLE\(^3\), WALTER RUGSBROOK\(^4\), FRAN WILDE\(^5\), COLIN CRAMPTON\(^6\), EMILY GRACE\(^1\), MELANIE MUIRSON\(^4\), RICHARD MOWLL\(^5\)

\(^1\) GNS Science \(^2\) Market Economics Ltd \(^3\) Resilient Organizations
\(^4\) Aurecon Ltd \(^5\) Wellington Lifelines Group \(^6\) Wellington Water

Thursday, March 7, 2019
Wellington

- Political and cultural capital of NZ
- 350,000 people in metro area
- Workforce heavily weighted to public service activity
- Centre of the NZ film industry
- Principal transport link to South Island
- Region produces ~ 15% national GDP
- Region particularly exposed to earthquake, tsunami, wind and flood hazards
- Geographically challenging location
Wellington Infrastructure Programme Business Case (PBC)

- PBC to identify where investment could be made in Wellington’s infrastructure to enhance resilience
- Joint programme of work across all WeLG infrastructure providers to help build a more resilient Wellington – key aspect is identifying interdependencies
- Main thesis: improving the resilience and undertaking infrastructure risk reduction works is a better option than simply responding to outages or disasters
- The main aim of this project is to identify where the investment should be made (including consideration of policy changes to help enable investment)
- The NZ Treasury’s Better Business Case Framework is being followed
Scenario Event

- M7.5 earthquake on the Wellington Fault
- ~5% probability in next 50 years
- Close to probable maximum loss event for NZ
- Infrastructure impacts only

Perils considered

- Fault Rupture
- Shaking
- Liquefaction
- Landslide
- Co-seismic subsidence
Earthquake Impact Model Framework

Define Event → Hazard Intensity → Exposure/Asset → Fragility → Impact → Restoration → Temporal outage → Economic Impact

What, where, how big → PGA, Sa(x), MMI, LSN... → Buildings, people, lifelines, agriculture → How hazards damage assets → Deaths, Dollars, Downtime → How asset recovers → Time stamped outage → GDP, Sector, Region

Damage modelling → Outage modelling → Economic modelling
Modelled Infrastructure

- Roads
- Rail
- Electricity
- Fuel
- Telecommunications
- Potable Water
- Waste Water
- Gas
- Port
- Airport

and their interdependencies
Example: Electricity Network Assets & Configuration

- 33 kv Cables
- Zone Substation
- Grid Exit Point (GXP)
- Transmission Structures
Electricity Fragility

Low Voltage Substation with Anchored Components

Transmission Structures

Peak Ground Acceleration (g)

Pr(DS ≥ Ds)

Peak Ground Acceleration (g)

Pr(DS ≥ Ds)
Electricity Outage & Restoration

1) Establish Connectivity

2) Apply Intra-dependent Restoration Times

3) Apply Inter-dependent Restoration Times

→ Key dependency is road access
Electricity Intervention Projects

Increase 160MW interconnectedness between substations
Interconnection between The Terrace and Moore St substations in WE* network

Central Park Substation improved resilience
Creation of new CPK2 site close to the existing substation

CPK - Frederick St cables replaced
Under ongoing cable replacement programme

Seismic upgrade of 33kV buried cables
Eastern Wellington 33kV ring (Frederick, Hataitai, Evans Bay, Ira St) and Lower Hutt 33kV ring

Replacement of all fluid filled cables in network
Co-creation of Outage Maps with Lifeline Agencies

Network Data (providers) → Outage Maps

Hazard/Vulnerability (direct losses) → Damage Results

Recovery Strategy

(socio-economic impact)
Physical Damage and Infrastructure Disruption

- Habitability
- Liveability
- Business Operability
- Business Viability
- Market Accessibility
- Tourism Attraction
- Transport provision/substitutability

Socio-Economic disruption

- People relocations
- Supply of goods and services
- Business relocations
- Altered supply/demand relationships
- Altered tourism demands
- Altered mode/service providers and transportation costs
MODELLING THE ECONOMIC RESILIENCE OF INFRASTRUCTURE TOOL

• **Fully dynamic.** The model is able to show transition pathways under various post-impact scenarios.

• **Sectoral and commodity coverage.** The model has between 40 and 60 aggregate economic sectors/commodities included.

• **Spatial.** The model allows economic impacts to be differentiated spatially in an area or community.

• **Multi-regional.** Covers all regions in New Zealand. This allows cross-boundary economic impacts associated with infrastructure failure to be accounted for including impacts in labour markets, capital markets, housing markets and infrastructure provisioning.

• **Based on General Equilibrium principles.** The model uses prices to equilibrate supply and demand.
A coordinated approach improves overall resilience sooner

- Road & Fuel are the greatest enablers
- Water is a crucial lifeline but is the most dependent on other lifelines

A prioritised spend of ~$2 billion over the next 20 years can save 3 times this is reduced future losses and faster recovery

and this is a minimum resilience dividend
A key aspect of the ‘value added’

- Resilience is ‘socially defined, but technically delivered’ through good policy, best practice investment planning/prioritisation and effective collaboration.
- Need to understand the make up and expectations of the community with regard to better delivering on resilience outcomes.

The benefits...

- People
- NZ Inc
- Government & Lifelines Organisations