Informing Development and Retrofit Incentives with Society-wide Benefit-Cost Analysis

Earthquake Engineering Research Institute 2019 Annual Meeting
March 7, 2019
Keith Porter, University of Colorado Boulder and SPA Risk LLC
“Money spent on reducing the risk of natural hazards is a sound investment. On average, a dollar spent by FEMA on hazard mitigation provides the nation about $4 in future benefits.”
Valuable, but questions remained

Private-sector retrofit

Adopt or exceed building codes

Utilities & transportation

Other perils

March 2019

Exceed: Jan 2018
Adopt: Jan 2019

October 2018

January 2018
<table>
<thead>
<tr>
<th>Peril</th>
<th>Overall Hazard Benefit-Cost Ratio</th>
<th>Exceed common code requirements</th>
<th>Meet common code requirements</th>
<th>Utilities and transportation</th>
<th>Federally funded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverine Flood</td>
<td>5:1</td>
<td>6:1</td>
<td>8:1</td>
<td>7:1</td>
<td></td>
</tr>
<tr>
<td>Hurricane Surge</td>
<td>7:1</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Too few grants</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>5:1</td>
<td>10:1</td>
<td>7:1</td>
<td>5:1</td>
<td></td>
</tr>
<tr>
<td>Earthquake</td>
<td>4:1</td>
<td>12:1</td>
<td>3:1</td>
<td>3:1</td>
<td></td>
</tr>
<tr>
<td>Wildland-Urban Interface Fire</td>
<td>4:1</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>3:1</td>
<td></td>
</tr>
</tbody>
</table>

Savings ($billion):
- Exceed common code requirements: $16/year
- Meet common code requirements: $13/year
- Utilities and transportation: $2.5/year
- Federally funded: $160/year

*BCR numbers in this study have been rounded.
Benefit categories included

- Property damage
- Business interruption
- Deaths & injuries
- PTSD
- Public service
- Insurance O&P
Some benefits too hard to estimate, so BCRs may be low.
Here, $BCR = \frac{PV\ of\ societal\ benefits}{PV\ of\ societal\ costs}$

- Incrementally efficient max = minimum lifecycle cost
- $BCR > 1.0$ means an investment gap
- $BCR > 1.0$ means that without the mitigation, other people pay more later for developers’ and initial owners’ short-term benefit
Seismic performance of stronger & stiffer buildings
Practicality: this California building could be designed to remain elastic at $\frac{2}{3} \times MCE_R$.
Affordability: 50% stronger & stiffer costs <1% more

Harris et al. (2014) designed 6 buildings to 1999 SBC & to 2003 IBC (like $I_e = 1.6$); costs 0-1% more

CUREE-Caltech Woodframe designed one building to IRC & to IO design; costs ~3% more
Affordability explained

Greater strength & stiffness increases this 2% of construction cost.

And doesn’t affect this cost at all.
More evidence of affordability

50% greater strength here

Is about the same as code level here

2 x San Diego = 1.0 x SF or LA
3 x Sacramento = 1.0 x western SF
Simmons & Kovacs 2017: “The code had no effect on either home sales or price for new homes in Moore.”

Price

Sales

Before

After
Above-code design I_e reaches 3.0
Benefit: $4.3 billion

- 35% – Property: $1,500
- 32% – Direct business interruption: $1,400
- 18% – Deaths, injuries & PTSD: $800
- 14% – Indirect business interruption: $600
- 1% – USAR: $30

millions 2016 USD

Cost: $1.2 billion

Above-code design overall BCR = 4:1
Benefit-cost analysis of some other seismic resilience measures
Code compliance BCR reaches 32:1
Code compliance overall BCR = 12:1

Benefit: $7 billion
- 43% – Property: $3
- 29% – Additional living expenses and direct business interruption: $2
- 14% – Deaths, injuries, and post-traumatic stress disorder: $1
- 14% – Indirect business interruption: $1
- 0.3% – Urban search and rescue: $0.02

Billions 2018 USD

Cost: $0.6 billion
Stakeholder net benefits for above-code design

- Lenders
- Communities
- Tenants
- Title Holders
- Developers

- Hurricane Wind
- Earthquake
- WUI Fire
- Riverine Flood
- Hurricane Surge
Stakeholder net benefits for code compliance

- Lenders
- Communities
- Tenants
- Title Holders
- Developers

Net Benefit, $bn

- Hurricane Wind
- Earthquake
- Riverine Flood
Soft-story retrofit BCR = 12:1

Benefit: $190 billion

- 58% – Property: $110
- 3% – Deaths, nonfatal injuries, PTSD: $5
- 26% – Additional living expenses: $50
- 13% – Indirect business interruption: $25

Billions 2018 USD

Cost: $16 billion
Secure hot water heater BCR = 22:1

Benefit: $75 billion
53% – Property: $40
7% – Additional living expenses: $5
4% – Indirect business interruption: $3
36% – Deaths & nonfatal injuries: $27
Billions 2018 USD

Cost: $3.4 billion
Secure bookcases $BCR = 13:1$

Benefit: 28 billion

100% – Injuries: 28

Cost: 2.2 billion

Billions 2018 USD
Other measures we are evaluating
Some limitations
BCRs is at most one among many considerations

- Preferences
- Resources
- Legal and time constraints
- Justice and equity
BCRs don’t speak to catastrophes

M7 Hayward Fault: 25% impaired

Partial solution: current minimum strength from other considerations
BCRs assume compliant construction
BCRs average over buildings & time
Funding mechanisms are needed
Conclusions
• BCRs are one way to evaluate mitigation strategies and set goals to optimize society’s interests
• Nobody actually loses when we build better or keep to with codes
• It is practical, affordable, & more efficient (with lower total cost of ownership) to building up to 3x stronger & stiffer, to keep up with new codes, and to do various common retrofit measures
• Better design & retrofit can be tailored geographically
Thanks

keith.porter@colorado.edu

626-233-9758
The public expects and prefers better

Preferred performance for a new building after the Big One \((n = 804)\)

- Do not know: 17%
- Life safe: 22%
- Functional: 18%
- Occupiable: 41%
- Other: 2%

What would you be willing to pay for occupiable or functional?

- $0/sf: 12%
- $1/sf: 20%
- $3/sf: 31%
- $10/sf: 20%
- Do not know: 17%
City councils and mayors “absolutely do not know” about the life-safety objective & how damaged a code-compliant building stock will be in the aggregate, and are unsatisfied when they do learn of it.

-- L. Jones, pers. comm., 19 Nov 2013
“Most members of BOMA know the code is life safety but they told me they wished it was higher. They don’t want to own a building that will be a total loss, but they can’t afford to do it alone and be more expensive than their competitors.”

-- L. Jones 2015 (written commun.)
ASCE’s Code of Ethics requires public input on codes

“ASCE’s Code of Ethics requires civil engineers to make a reasonable effort to elicit and reflect the preferences of the public, whose lives and livelihoods are at stake, when setting seismic performance objectives”

M Davis
Ill Inst Tech

R Hollander
NAE

J Heckert
Ariz St Univ

M Loui
Purdue Univ

M Martin
Chapman Univ