The Integration of Models, Data, and Virtual Computing for Operational Monitoring and Post-Disaster Emergency Response Management

Hamed Ebrahimian, Ph.D., P.E.
Senior Engineer, SC Solutions, Inc.

S. Farid Ghahari, Ph.D.
Assistant Project Scientist
Dept. of Civil and Environmental Engineering, UCLA

Ertugrul Taciroglu, Ph.D.
Professor and Chair
Dept. of Civil and Environmental Engineering, UCLA
Why Bother?

- Aging Infrastructures
- Threats
- Limited Resources
- Retrofit & Upgrading

Emergency Response
Asset Management

Retrofit & Upgrading

ASCE

$2042 Billion
Investment Needed

$941 Billion
Funding Provided

Surface Transportation Funding
Visual Inspection

- Costly
- Periodic
- Subjective
- No system-level insight
- Hidden damage

Maintenance Inspection

- # of bridges × inspection time × chaos = ?
- Intensity-based metrics can be inaccurate!
- Inspection complexity
- Hidden damage
- No system-level insight
SHM – NDE

Point Monitoring
- Load Cell
- Fiber Optics
- Crack Sensor

Modal-Based Linear Damage Identification
- Shortcomings?
 - Not sensitive to local damage
 - Based on limiting assumptions (broad band excitations, etc.) — inaccuracy and lack of robustness

NDE
- Source: FHWA SHRP2 Solutions
- (Source: DOI 10.1115/JRC2014-3782)

Shortcomings?
- Traffic interruption
- Cost
- Access limitations
- No system-level insight

Shortcomings?
- Data not information
- Limited damage detection, and quantification capability
- Require large number of sensors
- Maintenance and installation cost
- No system-level insight
Integration of Mechanics-Based Models with Data

Forward Simulation
- Model Parameter Uncertainties
- Unknown Inputs

Model Updating / Training
- Estimate Model Parameters
- Estimate Input Forces

Digital World
- Mechanics-based damage diagnosis at refined spatial resolution

Real World
Digital Twins

Real Twin

Data
- Traffic Data
 - Traffic induced Vibration
- Earthquake Data
 (Output or input-output)

Mechanics-based Model

Bayesian Data Assimilation

Digital Twin
Bayesian Data Assimilation

\[Y = y \]

\[\hat{Y} = f(\Psi) \]

Prior Information

\[p(\Psi) \]

Likelihood Function

\[p(Y = y | \Psi) \sim N(0, R) \]

Bayesian Updating

\[p(\Psi | y) = \frac{p(y | \Psi) \cdot p(\Psi)}{p(y)} \]
Digital Twins for Operational Monitoring and Management

1. Permanent/temporary sensors
2. Acceleration THs
3. Online Portal

Object Tracking / Type Detection

Bayesian FE Model Updating (Integrating Data with Model)

- Stochastic Filtering
- Mechanics-based FE Model
- Vehicle Locations
- Estimate jointly the model parameters and vehicular loads

Share Information with Stakeholders

Digital Twin

Regular camera system (tripod or drone mounted)
On-site laptop
Office/server computer
Box–Girder Bridge Case Study

- San Roque Canyon Bridge
- Typical prestressed cast-in-place RC box girder

Concrete deterioration & rebar corrosion in Deck

Concrete deterioration in Girders

Loss of prestress force
Verification Study

- Verification using numerically simulated data
- Poor condition in R2

- 40% Reduction in Top slab f'_c
- 20% Reduction in Girder f'_c
- 20% Reduction in Tendon Prestress
- No damage in Bottom slab

- 20 unknown material parameters + Rayleigh damping parameters + Vehicular loads

Accelerometers

Top Slab f'_c @ 5 regions
Girder f'_c @ 5 regions
Bottom Slab f'_c @ 5 regions
Section prestress force @ 5 regions
Verification Study
Damage Diagnosis

40% Reduction in Top slab f'_c
20% Reduction in Girder f'_c
20% Reduction in Tendon prestress
No damage in Bottom slab

Top Slab f'_c

Girders f'_c

Tendon Prestress Strain

Bottom Slab f'_c
Digital Twins for Post-Earthquake Assessment

- Permanent Sensors
- Output Acceleration THs
- Online Portal
- Measurements
- Bayesian FE Model Updating (Integrating Data with Model)
 - Stochastic Filtering
 - Mechanics-based FE Model
 - Predictions
 - Estimate jointly the model parameters and foundation input motions (FIMs)
- Digital Twin
- Share Information with Stakeholders

Bayesian FE Model Updating
(Integrating Data with Model)

Measurements

Stochastic Filtering

Predictions

Mechanics-based FE Model

Digital Twin

Share Information with Stakeholders
Box-Girder Bridge Case Study

CESMD Strong-Motion Data Set

Search

5 records match the following search parameters

Station (City, Name or No): san roque
Site Class: Any
PGA (g): Any
Epicentral Dist. (km): Any

<table>
<thead>
<tr>
<th>StatNo</th>
<th>Station</th>
<th>Network</th>
<th>Distance (km)</th>
<th>Horiz ApA (g)</th>
<th>Earthquake</th>
<th>View</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>25749</td>
<td>Santa Barbara - San Roque Canyon Bridge</td>
<td>CO5</td>
<td>27.2</td>
<td>0.015 0.047</td>
<td>20040508</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>157.0</td>
<td>0.015 0.045</td>
<td>20031202</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>18.0</td>
<td>0.041 0.152</td>
<td>20130529</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>9.5</td>
<td>0.022 0.046</td>
<td>20170420</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>“</td>
<td>“</td>
<td>“</td>
<td>67.9</td>
<td>0.015 0.058</td>
<td>20160427</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

SENSOR LOCATIONS

Santa Barbara - San Roque Canyon Bridge
Cahns Bridge No. 51-104 (SB-192-1.77)
CSMIP Station No. 25749
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulus of elasticity of the concrete (deck)</td>
<td>19</td>
<td>Longitudinal soil-foundation stiffness (abutment)</td>
</tr>
<tr>
<td>2</td>
<td>Compressive strength of the concrete (columns)</td>
<td>20</td>
<td>Longitudinal soil-foundation damping (abutment)</td>
</tr>
<tr>
<td>3</td>
<td>Initial modulus of elasticity of the concrete (columns)</td>
<td>21</td>
<td>Transverse soil-foundation stiffness (abutment)</td>
</tr>
<tr>
<td>4</td>
<td>Modulus of elasticity of the bearing pad</td>
<td>22</td>
<td>Transverse soil-foundation damping (abutment)</td>
</tr>
<tr>
<td>5</td>
<td>Shear stiffness of the bearing pad</td>
<td>23</td>
<td>Vertical soil-foundation stiffness (abutment)</td>
</tr>
<tr>
<td>6</td>
<td>Mass of the embankment-abutment</td>
<td>24</td>
<td>Vertical soil-foundation damping (abutment)</td>
</tr>
<tr>
<td>7</td>
<td>Vertical soil-foundation stiffness (piers)</td>
<td>25</td>
<td>Rotational soil-foundation stiffness about the longitudinal axis (abutment)</td>
</tr>
<tr>
<td>8</td>
<td>Vertical soil-foundation damping (piers)</td>
<td>26</td>
<td>Rotational soil-foundation damping about the longitudinal axis (abutment)</td>
</tr>
<tr>
<td>9</td>
<td>Longitudinal soil-foundation stiffness (piers)</td>
<td>27</td>
<td>Rotational soil-foundation stiffness about the vertical axis (abutment)</td>
</tr>
<tr>
<td>10</td>
<td>Longitudinal soil-foundation damping (piers)</td>
<td>28</td>
<td>Rotational soil-foundation damping about the vertical axis (abutment)</td>
</tr>
<tr>
<td>11</td>
<td>Transverse soil-foundation stiffness (piers)</td>
<td>29</td>
<td>Far-field soil-embankment stiffness in the longitudinal direction</td>
</tr>
<tr>
<td>12</td>
<td>Transverse soil-foundation damping (piers)</td>
<td>30</td>
<td>Far-field soil-embankment radiation damping in the longitudinal direction</td>
</tr>
<tr>
<td>13</td>
<td>Rotational soil-foundation stiffness about the longitudinal axis (piers)</td>
<td>31</td>
<td>Far-field soil-embankment material damping in the longitudinal direction</td>
</tr>
<tr>
<td>14</td>
<td>Rotational soil-foundation damping about the longitudinal axis (piers)</td>
<td>32</td>
<td>Initial stiffness of the soil-backwall stiffness in the longitudinal direction</td>
</tr>
<tr>
<td>15</td>
<td>Rotational soil-foundation stiffness about the transverse axis (piers)</td>
<td>33</td>
<td>Ultimate strength of the soil behind the backwall</td>
</tr>
<tr>
<td>16</td>
<td>Rotational soil-foundation damping about the transverse axis (piers)</td>
<td>34</td>
<td>Initial stiffness of the shear-key</td>
</tr>
<tr>
<td>17</td>
<td>Rotational soil-foundation stiffness about the vertical axis (piers)</td>
<td>35</td>
<td>Mass-proportional damping coefficient</td>
</tr>
<tr>
<td>18</td>
<td>Rotational soil-foundation damping about the vertical axis (piers)</td>
<td>36</td>
<td>Stiffness-proportional damping coefficient</td>
</tr>
</tbody>
</table>
Damage Diagnosis

Passive Soil Force-Deformation

Concrete Fiber Material Response

Shear Key Force-Deformation
Acknowledgements

- U.S. DOT - SBIR Program Grant # 6913G618P800109
- Caltrans Contract # 65A0642
- My colleagues at SC Solutions, Inc.
Thank you for your attention!